Giáo dục

Cách tìm vecto chỉ phương của đường thẳng cực hay – Toán lớp 10

Chào mừng bạn đến với caodangyduocdanang.edu.vn trong bài viết về Vecto chi phuong la gi cach tim vecto chi phuong cua duong thang cuc hay chúng tôi sẽ chia sẻ kinh nghiệm chuyên sâu của mình cung cấp kiến thức chuyên sâu dành cho bạn.

Cách tìm vecto chỉ phương của đường thẳng cực hay

A. Phương pháp giải

+ Cho đường thẳng d, một vecto u→ được gọi là VTCP của đường thẳng d nếu u→ có giá song song hoặc trùng với đường thẳng d.

+ Nếu vecto u→( a; b) là VTCP của đường thẳng d thì vecto k.u→ ( với k ≠ 0) cũng là VTCP của đường thẳng d.

+ Nếu đường thẳng d có VTPT n→( a; b) thì đường thẳng d nhận vecto n→( b; -a) và n’→( – b;a) làm VTPT.

B. Ví dụ minh họa

Ví dụ 1: Vectơ chỉ phương của đường thẳng d là:

A. u1→ = (2; -3) B. u2→ = (3; -1) C. u3→ = (3; 1) D. u4→ = (3; -3)

Lời giải

Một VTCP của đường thẳng d là u→( 3; -1)

Chọn B

Ví dụ 2: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(-3; 2) và B( 1; 4) ?

A. u1→ = (-1; 2) B. u2→ = (2; 1) C. u3→ = (- 2; 6) D. u4→ = (1; 1)

Lời giải

+ Đường thẳng AB đi qua hai điểm A và B nên đường thẳng này nhận vecto AB→( 4; 2) làm vecto chỉ phương .

+ Lại có vecto AB→u→( 2;1) là hai vecto cùng phương nên đường thẳng AB nhận vecto u→( 2;1) là VTCP.

Chọn B.

Ví dụ 3: Vectơ chỉ phương của đường thẳng = 1 là:

A. u4→ = (-2; 3) B. u2→ = (3; -2) C. u3→ = (3; 2) D. u1→ = (2; 3)

Hướng dẫn giải:

Ta đưa phương trình đường thẳng đã cho về dạng tổng quát:

= 1 ⇔ 2x + 3y – 6 = 0 nên đường thẳng có VTPT là n→ = (2; 3)

Suy ra VTCP là u→ = (3; – 2) .

Chọn B.

Ví dụ 4: Vectơ chỉ phương của đường thẳng d: 2x – 5y – 100 = 0 là :

A. u→ = (2; -5) B. u→ = (2; 5) C. u→ = (5; 2) D. u→=( -5; 2)

Lời giải

Đường thẳng d có VTPT là n→( 2 ;- 5) .

⇒ đường thẳng có VTCP là u→( 5 ; 2).

Chọn C.

Ví dụ 5 : Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(2 ; 3) và B( 4 ;1)

Xem thêm  Dàn ý nghị luận xã hội về một quan niệm sống - Thủ thuật

A. n→ = (2; -2) B. n→ = (2; -1) C. n→ = (1; 1) D. n→ = (1; -2)

Lời giải

Đường thẳng AB nhận vecto AB→( 2; -2) làm VTCP nên đường thẳng d nhận vecto

n→( 1; 1) làm VTPT.

Chọn C.

Ví dụ 6. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox

A. u1→ = (1; 0). B. u2→ = (0; -1) C. u3→ = (1; 1) D. u4→ = (1; – 1)

Lời giải

Trục Ox có phương trình là y= 0; đường thẳng này có VTPT n→( 0;1)

⇒ đường thẳng này nhận vecto u→( 1; 0) làm VTCP.

⇒ một đường thẳng song song với Ox cũng có VTCP là u1→=(1; 0).

Chọn A.

Ví dụ 7: Cho đường thẳng d đi qua A( 1; 2) và điểm B(2; m) . Tìm m để đường thẳng d nhận u→( 1; 3) làm VTCP?

A. m = – 2 B. m = -1 C. m = 5 D. m = 2

Lời giải

Đường thẳng d đi qua hai điểm A và B nên đường thẳng d nhận vecto AB→( 1; m – 2) làm VTCP.

Lại có vecto u→( 1; 2) làm VTCP của đường thẳng d. Suy ra hai vecto u→AB→ cùng phương nên tồn tại số k sao cho: u→ = kAB→

Vậy m= 5 là giá trị cần tìm .

Chọn C.

Ví dụ 8: Cho đường thẳng d đi qua A(- 2; 3) và điểm B(2; m + 1) . Tìm m để đường thẳng d nhận u→( 2; 4) làm VTCP?

A. m = – 2 B. m = -8 C. m = 5 D. m = 10

Lời giải

Đường thẳng d đi qua hai điểm A và B nên đường thẳng d nhận vecto AB→( 4; m – 2) làm VTCP.

Lại có vecto u→(2; 4) làm VTCP của đường thẳng d. Suy ra hai vecto u→ab→ cùng phương nên tồn tại số k sao cho: u→ = kAB→

Vậy m = 10 là giá trị cần tìm .

Chọn D.

Ví dụ 9. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A( a; 0) và B( 0; b)

A. u→( -a; b) B. u→( a; b) C. u→( a + b; 0) D. u→( – a; – b)

Lời giải

Đường thẳng AB đi qua điểm A và B nên đường thẳng này nhận AB→(-a;b) làm vecto chỉ phương.

Chọn A.

Ví dụ 10 . Đường thẳng d có một vectơ pháp tuyến là u→ = (-2; -5) . Đường thẳng ∆ vuông góc với d có một vectơ chỉ phương là:

Xem thêm  Nghị luận về gian lận trong thi cử (11 mẫu) - Lớp 9 - Download.vn

A. u1→ = (5; -2) B. u2→ = (-5; 2) C. u3→ = (2; 5) D. u4→ = (2; -5)

Lời giải

Khi hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia nên :

Lại có hai vecto u∆→( -2; -5) và u→( 2;5) cùng phương nên đường thẳng ∆ nhận vecto u→( 2; 5) làm VTCP.

Chọn C.

Ví dụ 11. Đường thẳng d có một vectơ chỉ phương là u→ = (3; -4). Đường thẳng ∆ song song với d có một vectơ pháp tuyến là:

A. n1→ = (4; 3) B. n2→ = (- 4; 3) C. n3→ = (3; 4) D. n4→ = (3; – 4)

Lời giải

Khi hai đường thẳng song song với nhau thì VTCP ( VTPT) của đường thẳng này cũng là VTCP (VTPT) của đường thẳng kia nên:

u∆→ = ud→ = (3; -4) → n∆→ = (4; 3)

Chọn A

C. Bài tập vận dụng

Câu 1: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Oy?

A. u1→ = (1; 0). B. u2→ = (0; 1) C. u3→ = (1; 1) D. u4→ = (1; -1)

Câu 2: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(1;2) và B( -3;6)

A. u→( 1; 1) B. u→( 1; -1) C. u→( 2; -3) D. u→(- 1; 2)

Câu 3: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O( 0; 0) và điểm M( a; b)

A. u→( 0; a + b) B. u→( a; b) C. u→( a; – b) D. u→( -a; b)

Câu 4: Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(1; -8) và B(3; -6)

A. n1→ = (2; 2). B. n2→ = (0; 0) C. n3→ = (8; -8) D. n4→ = (2; 3)

Câu 5: Đường thẳng d có một vectơ chỉ phương là u→ = (2; -1). Trong các vectơ sau, vectơ nào là một vectơ pháp tuyến của d?

A. n→( -1; 2) B. n→(1; -2) C. n→(-3; 6) D. n→( 3;6)

Câu 6: Đường thẳng d có một vectơ pháp tuyến là n→ = (4; -2) . Trong các vectơ sau, vectơ nào là một vectơ chỉ phương của d?

A. u1→ = (2; -4) B. u2→ = (-2; 4) C. u3→ = (1; 2) D. u4→ = (2; 1)

Xem thêm  Bài mẫu Phân tích đoạn thơ "Lần thứ ba thức dậy... Bác là Hồ Chí

Câu 7: Đường thẳng d có một vectơ chỉ phương là u→ = (3; -4). Đường thẳng ∆ vuông góc với d có một vectơ pháp tuyến là:

A. n1→ = (4; 3) B. n2→ = (-4; -3) C. n3→ = (3; 4) D. n4→ = (3; – 4)

Câu 8: Đường thẳng d có một vectơ pháp tuyến là n→ = (-2; -5) . Đường thẳng song song với d có một vectơ chỉ phương là:

A. u1→ = (5; -2) B. u2→ = (-5; -2) C. u3→ = (2; 5) D. u4→ = (2; -5)

Câu 9: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng d ?

A. u1→ = (6; 0) . B. u2→ = (-6; 0). C. u3→ = (2; 6). D. u4→ = (0; 1).

Câu 10: Vectơ nào dưới đây là một vectơ pháp tuyến của d:

A. n1→ = (2; -1) . B. n2→ = (-1; 2) . C. n3→ = (1; -2) . D. n4→ = (1; 2) .

Câu 11: Vectơ nào dưới đây là một vectơ chỉ phương của d: 2x – 3y + 2018 = 0

A. u1→ = (-3; -2) . B. u2→ = (2; 3) . C. u3→ = (-3; 2) . D. u4→ = (2; -3) .

Câu 12: Đường trung trực của đoạn thẳng AB với A( -3; 2); B(-3; 3) có một vectơ pháp tuyến là:

A. n1→ = (6; 5). B. n2→ = (0; 1) . C. n3→ = (-3; 5) . D. n4→ = (-1; 0) .

Câu 13: Cho đường thẳng d đi qua A(-1; 2) và điểm B(m; 3) . Tìm m để đường thẳng d nhận u→( -2; 1) làm VTCP?

A. m = – 2 B. m = -1 C. m = – 3 D. m = 2

Chuyên đề Toán 10: đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

  • Viết phương trình tham số, phương trình chính tắc của đường thẳng
  • Cách chuyển dạng phương trình đường thẳng: tổng quát sang tham số, chính tắc
  • Viết phương trình đường thẳng đi qua 1 điểm và song song (vuông góc) với 1 đường thẳng
  • Xác định vị trí tương đối giữa 2 đường thẳng
  • Tìm hình chiếu của 1 điểm lên đường thẳng

Đã có lời giải bài tập lớp 10 sách mới:

  • (mới) Giải bài tập Lớp 10 Kết nối tri thức
  • (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
  • (mới) Giải bài tập Lớp 10 Cánh diều

Mua hàng giảm giá Shopee Mã code

  • XMen For Boss chỉ 60k/chai
  • SRM Simple tặng tẩy trang 50k
  • Combo Dầu Gội, Dầu Xả TRESEMME 80k
Rate this post

Emily Tống

Emily Tống là biên tập nội dung tại website caodangyduocdanang.edu.vn. Cô tốt nghiệp đại học Ngoại Thương với tấm bằng giỏi trên tay. Hiện tại theo đuổi đam mê chia sẻ kiến thức đa ngành để tạo thêm nhiều giá trị cho mọi người.
Back to top button